Part Number Hot Search : 
STA328 R2500 40101 A2737 G62FP BR101 SMB30C IC18F
Product Description
Full Text Search
 

To Download IRF7904 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 07/10/06 IRF7904pbf hexfet   power mosfet benefits very low r ds(on) at 4.5v v gs  low gate charge  fully characterized avalanche voltage and current 20v v gs max. gate rating  improved body diode reverse recovery  100% tested for r g  lead-free applications dual so-8 mosfet for polconverters in notebook computers, servers, graphics cards, game consoles and set-top box v dss i d 30v q1 16.2m @v gs = 10v 7.6a q2 10.8m @v gs = 10v 11a r ds(on) max absolute maximum ratings parameter q1 max. q2 max. units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v 7.6 11 i d @ t a = 70c continuous drain current, v gs @ 10v 6.1 8.9 a i dm pulsed drain current 61 89 p d @t a = 25c power dissipation 1.4 2.0 w p d @t a = 70c power dissipation 0.9 1.3 linear derating factor 0.011 0.016 w/c t j operating junction and c t stg storage temperature range thermal resistance parameter q1 max. q2 max. units r jl junction-to-drain lead  20 20 c/w r ja junction-to-ambient  90 62.5 20 30 -55 to + 150 so-8                downloaded from: http:///
  2 www.irf.com static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage q1&q2 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient q1 CCC 0.024 CCC v/c q2 CCC 0.024 CCC q1 CCC 11.4 16.2 r ds(on) static drain-to-source on-resistance CCC 14.5 20.5 m ? q2 CCC 8.6 10.8 CCC 10 13 v gs(th) gate threshold voltage q1&q2 1.35 CCC 2.25 v ? v gs(th) / ? t j gate threshold voltage coefficient q1 CCC -5.0 CCC mv/c q2 CCC -5.0 CCC i dss drain-to-source leakage current q1&q2 CCC CCC 1.0 a q1&q2 CCC CCC 150 i gss gate-to-source forward leakage q1&q2 CCC CCC 100 na gate-to-source reverse leakage q1&q2 CCC CCC -100 gfs forward transconductance q1 17 CCC CCC s q2 23 CCC CCC q g total gate charge q1 CCC 7.5 11 q2 CCC 14 21 q gs1 pre-vth gate-to-source charge q1 CCC 2.2 CCC q1 q2 CCC 3.7 CCC v ds = 15v q gs2 post-vth gate-to-source charge q1 CCC 0.6 CCC nc v gs = 4.5v, i d = 6.1a q2 CCC 1.1 CCC q gd gate-to-drain charge q1 CCC 2.5 CCC q2 q2 CCC 4.8 CCC v ds = 15v q godr gate charge overdrive q1 CCC 2.2 CCC v gs = 4.5v, i d = 8.8a q2 CCC 4.4 CCC q sw switch charge (q gs2 + q gd ) q1 CCC 3.1 CCC q2 CCC 5.9 CCC q oss output charge q1 CCC 4.5 CCC nc q2 CCC 9.1 CCC r g gate resistance q1 CCC 3.2 4.8 ? q2 CCC 2.9 4.4 t d(on) turn-on delay time q1 CCC 6.9 CCC q2 CCC 7.8 CCC t r rise time q1 CCC 7.3 CCC i d = 6.1a q2 CCC 10 CCC ns t d(off) turn-off delay time q1 CCC 10 CCC q2 CCC 15 CCC t f fall time q1 CCC 3.2 CCC i d = 8.8a q2 CCC 4.6 CCC c iss input capacitance q1 CCC 910 CCC q2 CCC 1780 CCC c oss output capacitance q1 CCC 190 CCC pf q2 CCC 390 CCC c rss reverse transfer capacitance q1 CCC 94 CCC q2 CCC 180 CCC avalanche characteristics parameter q1 max. q2 max. units e as single pulse avalanche energy 140 250 mj i ar avalanche current  6.1 8.8 a diode characteristics parameter min. typ. max. units i s continuous source current q1 CCC CCC 1.8 a (body diode) q2 CCC CCC 2.5 i sm pulsed source current q1 CCC CCC 61 a (body diode)  q2 CCC CCC 88 v sd diode forward voltage q1 CCC CCC 1.0 v q2 CCC CCC 1.0 t rr reverse recovery time q1 CCC 11 17 ns q2 CCC 16 24 q rr reverse recovery charge q1 CCC 2.6 3.9 nc q2 CCC 6.9 10 v gs = 4.5v, i d = 6.1a  v gs = 4.5v, i d = 8.8a  v ds = 15v, i d = 8.8a v dd = 15v, v gs = 4.5v v gs = 10v, i d = 11a  q1: v ds = v gs , i d = 25a v ds = 15v, i d = 6.1a v ds = 24v, v gs = 0v, t j = 125c v dd = 15v, v gs = 4.5v CCC v ds = 15v clamped inductive load v gs = 0v ? = 1.0mhz typ. CCC q1 t j = 25c, i f = 6.1a, v dd = 15v, di/dt = 100a/s  t j = 25c, i s = 6.1a, v gs = 0v  showing the integral reverse p-n junction diode. t j = 25c, i s = 8.8a, v gs = 0v  q2 t j = 25c, i f = 8.8a, v dd = 15v, di/dt = 100a/s  mosfet symbol q2: v ds = v gs , i d = 50a v ds = 16v, v gs = 0v q1 v gs = 20v v gs = -20v v ds = 24v, v gs = 0v conditions q2 conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 7.6a  downloaded from: http:///
  www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics q1 - control fet q2 - synchronous fet typical characteristics fig 3. typical output characteristics fig 4. typical output characteristics fig 5. typical transfer characteristics fig 6. typical transfer characteristics 1.0 2.0 3.0 4.0 5.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 15v 60s pulse width t j = 25c t j = 150c 1.0 2.0 3.0 4.0 5.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 15v 60s pulse width t j = 25c t j = 150c 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 2.5v vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 150c 2.5v vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 2.5v vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 150c 2.5v vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v downloaded from: http:///
  4 www.irf.com q1 - control fet q2 - synchronous fet typical characteristics fig 7. typical capacitance vs. drain-to-source voltage fig 8. typical capacitance vs. drain-to-source voltage fig 9. typical gate charge vs. gate-to-source voltage fig 10. typical gate charge vs. gate-to-source voltage fig 11. maximum safe operating area fig 12. maximum safe operating area 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 5 10 15 20 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 6.1a 0 5 10 15 20 25 30 35 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 8.8a 0.01 0.10 1.00 10.00 100.00 v ds , drain-tosource voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t a = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 100msec 0.01 0.10 1.00 10.00 100.00 v ds , drain-tosource voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t a = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 100msec downloaded from: http:///
  www.irf.com 5 fig 17. typical on-resistance vs.gate voltage q1 - control fet q2 - synchronous fet typical characteristics fig 13. normalized on-resistance vs. temperature fig 14. normalized on-resistance vs. temperature fig 15. typical source-drain diode forward voltage fig 16. typical source-drain diode forward voltage fig 18. typical on-resistance vs.gate voltage -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 7.6a v gs = 10v 0.2 0.4 0.6 0.8 1.0 1.2 1.4 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 2.0 4.0 6.0 8.0 10.0 v gs , gate-to-source voltage (v) 10 15 20 25 30 35 40 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) t j = 25c t j = 125c i d = 7.6a -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 11a v gs = 10v 2.0 4.0 6.0 8.0 10.0 v gs , gate-to-source voltage (v) 5 10 15 20 25 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) t j = 25c t j = 125c i d = 11a 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v downloaded from: http:///
  6 www.irf.com q1 - control fet q2 - synchronous fet typical characteristics fig 19. maximum drain current vs. ambient temp. fig 20. maximum drain current vs. ambient temp. fig 21. threshold voltage vs. temperature fig 22. threshold voltage vs. temperature fig 23. maximum avalanche energy vs. drain current fig 24. maximum avalanche energy vs. drain current 25 50 75 100 125 150 t j , ambient temperature (c) 0 2 4 6 8 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.4 1.8 2.2 2.6 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 0.34a 0.48a bottom 6.1a 25 50 75 100 125 150 t j , ambient temperature (c) 0 2 4 6 8 10 12 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.4 1.8 2.2 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 starting t j , junction temperature (c) 0 200 400 600 800 1000 1200 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 0.57a 0.77a bottom 8.8a downloaded from: http:///
  www.irf.com 7 fig 25. maximum effective transient thermal impedance, junction-to-ambient (q1) fig 26. maximum effective transient thermal impedance, junction-to-ambient (q2) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc ri (c/w) i (sec) 10.908 0.0210834.35 1.1482 17.15 39.7 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc ri (c/w) i (sec) 17.122 0.01892553.325 0.74555 19.551 39.2 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri fig 27. layout diagram downloaded from: http:///
  8 www.irf.com fig 30a. switching time test circuit fig 30b. switching time waveforms v gs v ds 9 0% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 29b. unclamped inductive waveforms fig 29a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 31a. gate charge test circuit fig 31b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 28. 
         for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"         d.u.t. v d s i d i g -3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - downloaded from: http:///
  www.irf.com 9 so-8 part marking       

  



 



 
  



 
 

 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
           

 
 

 
         
                            

       

       
     !    " ##       $%   $                   
 

   $  $       &     
 
    

 
                      
       
  so-8 package outlinedimensions are shown in milimeters (inches) downloaded from: http:///
  10 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2006 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) n otes: 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters(inches). 3 . outline conforms to eia-481 & eia-541. so-8 tape and reeldimensions are shown in millimeters (inches) 
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, q1: l = 7.7mh r g = 25 ? , i as = 6.1a; q2: l = 6.5mh r g = 25 ? , i as = 8.8a.  pulse width 400s; duty cycle 2%.  when mounted on 1 inch square copper board.   
   & 
  downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF7904

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X